Preface

Preface

The history of biological research is filled with examples of new laboratory techniques which, at first, are suitable topics for doctoral theses but eventually become so widely useful and standard that they are learned by most undergraduates. The use of computer programming in biology research is such an increasingly standard skill for many biologists. Bioinformatics is one of the most rapidly growing areas of biological science. Fundamentally, it's a cross-disciplinary study, combining the questions of computer science and programming with those of biological research.

As active sciences evolve, unifying principles and techniques developed in one field are often found to be useful in other areas. As a result, the established boundaries between disciplines are sometimes blurred, and the new principles and techniques may result in new ways of seeing the science as a whole. For instance, molecular biology has developed a set of techniques over the past 50 years that has also proved useful throughout much of biology in general. Similarly, the methods of bioinformatics are finding fertile ground in such fields as genetics, biochemistry, molecular biology, evolutionary science, development, cell studies, clinical research, and field biology.

In my view, bioinformatics, which I define broadly as the use of computers in biological research, is becoming a foundational science for a broad range of biological studies. Just as it's now commonplace to find a geneticist or a field biologist using the techniques of molecular biology as a routine part of her research, so can you frequently find that same researcher applying the techniques of bioinformatics. Molecular biology and bioinformatics may not be the researcher's main areas of interest, but the tools from molecular biology and bioinformatics have become standard in searching for the answers to the questions of interest. The Perl programming language plays no small part in that search for answers.